黄色视频网站一级片,白峰在线观看视频,免费看一级高潮毛片A片,免费观看无码一级黄片

你的位置:首頁 > 行業新聞 > 廢品新聞

青浦廢舊物資回收平臺之回收廢銅的基本知識

2024/6/25 14:48:36      點擊:
  銅的基本知識:
  銅以其良好的導電和導熱能力成為電子和電力工業領域里的首選和主要材料。為了達到所要求的性能標準,使用的幾乎都是高純度的銅。這篇文章主要討論了這樣做的原因,同時還特別關注了一些根本的冶煉原則。其目的是要針對過去十年銅線領域里的相關發展展開進一步的討論。


  應用:
  銅是以其純凈形式而不是合金形式而具有最廣泛用途的稀有金屬之一。大約有五十多種不同的鍛壓合金中銅的最小含量是99.3%,雖然只有一小部分在工業上用作電導體。這些低合金中最常用的是電解韌銅,它由這純度的金屬構成,這種金屬可與氧在100-650ppm的范圍內結成合金。但是在氫氣環境中人們建議不要使用ETP銅,因為當它暴露于這些溫度時會受到氫脆裂的影響。在這樣的環境下,要么使用無氧銅,要么就使用無氧電子銅。


  含銀銅中電源電壓器中的應用相當有限,因為它在溫度提高時具有較高的強度和較弱的抵抗力。


  雜質的作用:
  在高導電率形成過程中化學性質是最重要的變量之一。這些成分中最有害的東西能夠降低導電率、提高退火線的機械強度、避免再結晶、有時在生產銅棒的熱壓過程中還會導致熱脆。無數的研究調查表明:極少數量的溶解物都會一次性地提高銅的電阻率。許多雜質都會階段性地提高其半硬再結晶溫度。然而,當雜質與沉淀物或氧化物而不是溶解物混合在一起時,對導電率的有害影響就會降到最低。表2表明了各種各樣的單一元素添加到只含有200ppm氧的高純度ETP銅所產生的影響。一般來說,每百萬分之一雜質中的前半部分與相同劑量的后半部分相比影響力更大。然而,需要注意的是,自從建立于1913年的銅電力標準由 100%IACS導電率表示以來,商業銅的純度就得到了極大地改善。如今,大部分商業銅負極的導電率都超過101%IACS。

  氧成分的影響:
  氧是為了改善鑄造銅的堅固性通過對燃汽——金屬反應的控制而采用的一種合金成分。同樣重要的是,氧在與大部分雜質反應的過程中都起到了一個清除器的作用,而這些雜質當它們溶解在銅基質中時對其特性和退火反應都有巨大的影響作用。相反,當這些雜質與不可溶解的氧化物混合在一起的時候,這些壞作用就被抵消了。從表3可以看出,ETP銅導電率的**值是200ppm。因而,ETP銅中氧的含量大致在175和450ppm之間。由于分散雜質容易引起熱裂,所以通常都盡量避免低氧值。相反,超于這一**限制的氧氣值并不常見,因為這對可成形性具有附作用。實際的氧含量應是既要有較好退火過程,還要避免可能出現的可塑性問題。



  熱機械可調變量的重要性:
  除了由金屬雜質形成的氧化物之外,氧化物還可以通過改變熱力史從銅基質中溶解或沉淀出氧化物。這些固體反應可能會影響最終的粒子大小,因為銅氧化物成分在再結晶的過程中能幫助形成大小統一的粒子。然而,二次再結晶(不正常的粒子成長)通常都與一個雙重的顆粒結構有關,而這一顆粒結構是在高溫退火過程中由氧化物的溶解形成的。粒子粗化和孿晶的出現主要是由于溶液溫度超過了500攝氏度,且氧的濃度低于600ppm.拉絲之前形成的粗粒子在接下來的低溫退火之后并沒有被消除掉。從高溫冷卻下來的冷卻速率也會影響到高溫機械性能,尤其是雜質成分相當地大時。快速淬火會導致固態溶液中高濃度、不均勻的雜質成分。從另一方面講,慢速冷卻會增強雜質和氧之間的相互作用,這又有利于雜質從固態溶液中沉淀下來。在退火期間通過拉絲或軋制所作的冷加工對于商業磁線來說是有限制的。在最終冷卻之前為了得到比較好的順應性(即銅線在成形或彎曲過程中以最小的回彈性保持形狀的能力),**要限制一下冷加工的數量。高模數和低屈服強度都是比較理想的性能,因為它們都是最小回彈性的標志。


  退火過程:
  銅的退火性是個非常復雜的特性,這一特性是由一系列的其他屬性組成,而這些屬性又會隨著變形、熱過程、金屬純度和氧成分的多少而發生變化。當雜質沉淀下來以后,它們對退火過程的影響是比較小的,這與固態溶液中的情形是截然不同的。退火溫度與溶劑(這里指的是銅)和溶質(這里指的是雜質)之間原子大小的區別有一定的關系。溶質元素的化合價也是影響退火性的一個重要參數。然而,由于多種物質之間熱動力的相互作用所形成的復雜狀況,退火性并不只是簡單地與一些可能的參數,如:原子量或溶質的化合價有關。


  表面影響:
  在外界溫度下,銅線總是有一個殘留的氧化膜,而這一氧化膜是當銅線進入熱桿軋制階段時從高溫的、連續鑄造的銅桿上形成的。現在在銅業中通過一種電量分析控制檢測手段來測量殘留的表面氧化膜的厚度已成為一種比較標準的作法。氧化膜可能會相當地有害,因為它們可能會在拉絲過程中引發許多缺陷、使拉絲膜過度磨損、可焊性變差、搪瓷膜和裸導體之間的附著力變弱。


  銅桿的缺陷之處往往是源于連續鑄造過程和軋制過程,這包括:殘渣、銅氧化夾雜物、熱裂、裂塊、銅桿表面氧化顆粒的形成。大部分金屬間化合的夾雜物都比較脆,因而都成為拉絲過程中裂紋發生和蔓延的場所。相對于缺陷而言,較細的磁線和成形線是最主要的生產產品。


  ****的表面缺陷源于拉絲,往往是以拉模劃痕、機械損傷、弧口鑿或裂片的形式出現在裸導體的表面。因為拉絲問題而形成的裂片往往與所捕獲的氧化物沒有太大關系。表面損傷通常是由于拉絲機內移動線未對準或拉絲膜爐口內銅精煉的壓制力太大則形成的。


  未來的挑戰:
  人們對于更好表面質量、更大包裝型號的需求在不斷地上升,而且越來越期望生產出一種“無疵點”并少斷折的銅桿(即有很好的可拉性)。滿足這些需求的推動力將會是:更好的能源效率、愈加激烈的全球競爭、更多的家居應用、在地價上漲的情況下所使用的小型電動機,比如汽車中使用的馬達。因而人們會越來越愿意使用比較小的計量尺寸。


  隨著電解冶金法的出現和電解精煉所取得的不斷進步,目前商業銅負極的純度似乎已經達到了大家都可以接受的水平,而且已經沒有必要進一步限制雜質的數量。然而,在易切削黃銅工業中,鉍已經被用來代替鉛作為一種合金元素。因為鉍對于電力銅導體具有很大的毒性作用,因此人們要求黃銅碎片應與銅碎片完全地分割開來。


  銅線工業面臨的一個問題是在拉絲過程中,由于研磨或分層而造成了許多表面的疵點。為了解決這一問題,關健是要在以下幾個方面有所改進:銅桿的表面質地、拉絲潤滑劑、固體顆粒的過濾、單一合成晶體鉆石拉絲膜的生產。


  一個十分重要的未來挑戰就是開發出更多敏感的傳感器,通過用一種非接觸檢測手段來檢測銅棒、銅桿和銅線上的非破性疵點。這些疵點中的大部分由于太小而用現在的漩渦流檢測設備是根本檢測不到的。此外,還需要開發一種在線檢測設備來輕易地檢測大孔隙和其他的內部疵點。


  影響線狀電力銅導體性能、加工和運行的因素從很大程度上講是建立在現存的冶煉原則基礎之上的。然而,雜質和退火溫度及電阻率之間的關系還需要在數量上進一步改進一下。


  未來展望:


  世界經濟變得越來越全球化了。隨著二十一世紀的到來,第三世界國家正在建立電訊鏈路,變成電力的主要消費者,他們在建造家園、工廠和商業建筑,這樣就需要大量的銅來滿足他們的需求。銅被用作工程原料已有一萬年的歷史了,它對人類的貢獻是呈金字塔式的,與日俱增。如果沒有銅,真不敢想象未來的世界將會是什么樣子。